提出了一种基于粗网格与模式搜索相结合的支持向量机分类器模型参数优化方法,采用Jaakkola-Haussler误差上界作为模型选择的评价标准。以黎曼几何为理论依据,提出了一种新的保角变换,对核函数进行数据依赖性改进,进一步提高分类器泛化能力。在研究人工非线性分类问题的基础上,将该方法应用于手写相似汉字识别,实验结果表明分类精度得到了明显提高。