摘要

脑电信号容易记录且不易伪装,基于脑电信号的情感识别越来越受到人们的关注.然而,人类情感具有多样性和个体可变性,基于脑电信号的情感识别仍是情感计算领域的难题.本文提出一种多源域领域适应字典学习和稀疏表示方法.为减少源领域和目标领域数据分布的差异,将所有领域的数据投影到共享子空间,并在共享子空间中学习一个共有字典.根据稀疏重建的最小化类内误差和最大化类间误差准则,稀疏表示具有类别的分辨能力.另外,每个源域自适应学习领域权重,可以避免负迁移的发生.模型参数的求解通过参数交替优化方法,所有参数可同时达到最优解.DEAP数据集的实验结果显示本文方法在所有对比方法中是最优的.

  • 单位
    常州轻工职业技术学院; 江苏理工学院

全文