摘要

提升土壤属性空间预测精度对实现农田精准施肥和保护生态环境具有重要意义。利用河北省滦平县采集的1 773个样点耕地表层(0~20cm)土壤有机质(SOM)及其地理环境数据,通过逐步回归分析方法筛选出最优环境变量;基于其中1 426个农田样点分别建立多元线性回归(Multiple Linear Regression,MLR)、随机森林(Random Forest,RF)、贝叶斯正则化神经网络(Bayesian regularization neural network,BRNNBP)以及与普通克里格(OK)整合模型(MLR-OK、RF-OK和BRNNBP-OK)预测SOM空间分布,以其余347个样点数据为测试集检验分析不同模型预测精度,并对模型残差进行半方差函数和空间自相关分析以评价模型拟合效果。结果表明,研究区耕地表层土壤SOM处在8.62~35.64 g·kg-1变化区间,变异系数为20.26%,属中等程度空间变异;SOM高值区主要分布在东北及东南海拔较高地区,低值区多分布在西南及中部河谷地区;海拔、坡度和年均温度与SOM关系密切(P-1和2.801 g·kg-1,相较于OK、MLR、RF、BRNNBP、MLR-OK和RF-OK预测模型,R2提升1.84%~43.72%,成为SOM空间预测优选模型。与单一模型相比,整合模型残差块金系数大于0.75,Moran’s I指数均小于0且数值更趋近于0,表明整合模型残差空间自相关性减弱且空间分布呈离散状态。同时,各模型精度与模型残差Moran’s I指数呈显著相关。因此,整合模型可以拟合更多的趋势项,模型残差空间聚集性降低甚至趋于离散时,模型总体精度提升,揭示了模型精度提升的内在原因。