摘要

提出了一种基于隐含狄利克雷分布(LDA)与距离度量学习(DML)的文本分类方法,该方法利用LDA为文本建立主题模型,借助Gibbs抽样算法计算模型参数,挖掘隐藏在文本内主题与词的关系,得到文本的主题概率分布.以此主题分布作为文本的特征,利用DML方法为不同类别的文本学习马氏距离矩阵,从而较好的表达了文本之间的相似性.最后在学习到的文本间距离上,利用常用的KNN及SVM分类器进行文本分类.在经典的3个数据集中的实验结果表明,该方法提高了文本分类的准确率,并且在不同的隐含主题数目参数下能体现较好的稳定性.