摘要
高空间分辨率雪深数据对于区域气候、水文研究具有重要的意义。利用10km空间分辨率的AMSR2 L1B亮度温度数据,结合500m空间分辨率的MODIS逐日无云积雪面积比例数据,发展了一种多源数据融合的空间动态降尺度雪深反演算法(SDD)。基于该算法获取了北疆地区500m空间分辨率的雪深数据(SDDsd),并利用研究区30个气象台站和野外实测的雪深数据对该算法反演雪深的精度进行了评估。结果表明:基于SDD方法获取的雪深数据与实测雪深数据之间的决定系数R2为0.74,均方根误差RMSE为3.47 cm;雪深反演的精度与下垫面类型密切相关,草地精度最高,城镇和建设用地次之,耕地相对较差;雪深反演的精度也会受到地形的影响,精度随坡度的增加而降低。相对于微波遥感雪深数据直接重采样结果,新的算法有效提高了浅雪区雪深反演精度,同时能更精细地描述积雪的空间分布,为理解区域气候变化、水文循环提供了可靠的数据支撑。此外,随着长时间序列全球尺度逐日无云FSC数据的生产,结合现有的长时间序列全球尺度AMSR2数据,该算法有望制备全球的降尺度雪深产品。
- 单位