摘要
针对现有的基于全局特征的三维物体识别方法和基于局部特征的三维物体识别方法在有遮挡和混叠场景中识别效果均不理想的问题,提出了一种基于点对特征的三维点云匹配算法。利用模型上的所有点对特征来完成全局模型描述构建,并在减少的二维空间上,利用快速投票方案,在局部对模型点云和场景点云进行匹配,从而恢复模型在场景中的全局姿态。实验结果表明:该算法在有遮挡和混叠的场景中识别效果比较理想。
- 单位
针对现有的基于全局特征的三维物体识别方法和基于局部特征的三维物体识别方法在有遮挡和混叠场景中识别效果均不理想的问题,提出了一种基于点对特征的三维点云匹配算法。利用模型上的所有点对特征来完成全局模型描述构建,并在减少的二维空间上,利用快速投票方案,在局部对模型点云和场景点云进行匹配,从而恢复模型在场景中的全局姿态。实验结果表明:该算法在有遮挡和混叠的场景中识别效果比较理想。