摘要
针对采用传统支持向量机(Support Vector Machine,SVM)进行故障诊断时核函数的构造和参数的选取存在盲目性的问题,提出一种基于改进果蝇优化算法优化多核SVM的液压泵故障诊断方法。首先,对液压泵振动信号进行局部特征尺度分解(Local Characteristic-scale Decomposition,LCD),从多个角度提取混合特征组成特征集。然后,基于全局核函数和局部核函数构建多核支持向量机,并利用具有Levy飞行特征的果蝇优化算法(LFOA)对核函数权值和参数的选取进行优化。最后,将特征集输入多核SVM进行识别。液压泵故障诊断结果表明,与采用FOA、GA和PSO优化算法及单核SVM相比,所提方法具备全局寻优能力强和诊断准确率高的优点,可有效应用于液压泵故障诊断。
-
单位中国人民解放军陆军工程大学