摘要
低空无人机(UAV)测量凭借着低成本、高效率、高精度的数据采集模式,可快速获取高空间分辨率的影像数据,已经成为遥感领域的一种重要技术手段。其中,影像匹配技术是UAV影像数据处理的重要步骤,图像间的匹配直接影响后期三维场景的精度及视觉效果。针对高原山地的高差起伏变化大地形复杂,植被覆被率高及地物分布不规则等问题存在,致使在该区域UAV地形测量处理中因局部噪声造成影像匹配较难。由于影像获取时受到该区特殊地形的限制,大场景影像需要借助多幅影像匹配拼接得到。目前,基于特征点的影像匹配是一种图像配准技术,不仅适用于低重叠度影像之间的匹配,还可以运用到运动恢复图像间的匹配。为探索特殊地形地貌条件下快速有效的UAV影像匹配技术,提出一种面向高原山地复杂地形的集成尺度不变特征变换(SIFT)算法与最近邻次近邻距离比(NNDR)、随机抽样一致算法(RANSAC)模型约束改进的UAV影像匹配方法。主要技术流程为:首先,基于SIFT算法,进行尺度空间的极值检测,构建高斯金字塔函数,通过高斯差分运算来实现特征点定位,并对所检测到的特征点的邻域位置、方向、尺度等进行统计分析,据此生成适合UAV影像特征的描述符;其次,集成“马式距离”和NNDR模型的综合运用,进行特征点对的第一次约束优化提取及相似度检测,在此基础上,利用RANSAC算法,引入匹配点对的均方根误差值(RMSE)进行第二次约束,以实现匹配错误点对的剔除,保证了影像匹配精确优化。此外,为了证实所提出优化算法的有效性,选择了1组高原山地典型地貌UAV影像数据进行匹配试验,结果表明:面向高原山地复杂地形进行无人机影像匹配中,所提出的改进算法不仅可以提取大量的特征点对,同时还可以提高同名特征点的检测正确率,并且配准正确率达到了85%,因此更加适用于高原山地复杂地形的无人机影像匹配处理技术优化。
-
单位滇西应用技术大学; 昆明理工大学