摘要
结构熵是度量网络复杂度的重要手段,为了弥补传统结构熵仅仅关注网络单一特性的问题,提出了一种改进Renyi熵算法来研究心算任务下的EEG脑网络,引入了两个重要网络属性——分形维数和介数中心性来提高网络复杂性的度量能力。之后,基于心算EEG数据计算两两电极间的相位锁定值(PLV),构建了复杂脑网络,并进行复杂度分析。结果表明,在α频段,心算状态下额叶与顶枕叶的脑同步性低于休息状态,心算状态的脑网络复杂性高于休息状态。利用支持向量机(SVM)实现了休息、心算状态的识别,算法识别准确率达到了88.42%。
- 单位