论文把模糊关联规则挖掘算法引入到网络的入侵检测,利用该算法从网络数据集中提取出具有较高可信性和完备性的模糊规则,并利用这些规则设计和实现用于入侵检测的模糊分类器。同时,针对模糊关联规则挖掘算法,利用K-means聚类算法建立属性的模糊集和模糊隶属函数,并提出了一种双置信度算法以增加模糊规则的有效性和完备性。最后,给出了详实的实验过程和结果,以此来验证提出的模糊入侵检测方法的有效性。