摘要

针对视觉跟踪中由于尺度变化、遮挡等复杂场景造成的跟踪失败问题,提出一种尺度长宽比自适应变化的目标尺度估计算法。该算法采用35×35个尺度因子来实现对目标的长宽比估计,为了降低运算量,通过分层尺度估计对二维尺度采样因子进行选择,既确定了目标的最佳尺度,又提高了算法的运行速度;为了进一步提高跟踪算法的鲁棒性,使用相邻两帧之间响应向量的欧式距离作为评判模板是否更新的标准。将尺度估计和模板更新模块引入到目前3种性能出色的相关滤波算法DSST、HCF和OSA中,进行仿真验证。实验结果表明,与原始算法相比,引入模块的新算法在跟踪成功率和精度上均有显著提高,在OTB100数据集上,成功率与3种原始算法相比,分别提高了1.3%、1.4%和1.4%,精度分别提高了1.2%、1.3%和1.0%,尤其在尺度变化、目标遮挡等复杂场景下具有明显的优势。