摘要

火电厂机炉协调控制系统的控制对象是一个多变量的复杂模型,具有非线性、强耦合、惯性大的特点。针对传统的建模方法缺乏灵活性的缺点,提出一种基于粒子群优化DBN(深度信念网络)的机炉协调系统数据驱动建模方法,以时序数据为基础,采用DBN的无监督贪婪逐层训练算法确定各层网络的权值,引入粒子群优化算法对DBN网络层的神经元数量进行寻优,提高模型精度,最后,结合BP网络在顶层设计联想记忆层实现预测回归分析功能。以660 MW燃煤机组协调系统为试验对象,结果表明,该方法建立的模型具有良好的非线性拟合能力,预测精度高。