摘要
针对工业领域利用深度学习模型对矿石进行在线分类时,矿石样本稀少导致的模型过拟合、分类准确率低的问题,提出一种结合X射线透射成像技术的矿石数据增强分类方法。该方法基于改进辅助生成对抗网络(Enhance-based Classification ACGAN-gp, EC-ACGAN-gp),采用卷积和连续残差块构建判别器和生成器,引入注意力机制捕捉矿石细节特征,生成高质量样本扩充原始数据集,同时使用带梯度惩罚的Wasserstein距离重构判别器的损失函数提高对抗训练的稳定性,避免模式崩溃。通过增加辅助分类器重建样本标签信息,最终实现矿石样本的类别预测。结果表明,该方法能实现矿石品位分类的精准预测,准确率可达89.62%,比现有传统方法提高3.98%。该模型生成的矿石样本泛化性良好,能够显著提高小样本数据集的泛化性,在SVM、LeNet5、VGGNet、ResNet上测试,精度分别提升了2.83%、2.36%、1.89%和3.74%,可进一步用于提升其他分类模型在矿石品位预测方面的性能。
- 单位