摘要
本发明公开了一种用于运动想象分类的结合类内距和类间距的迁移学习方法,包括步骤:1)利用除当前受试者以外的其它受试者的跨session数据作为训练集,当前受试者的跨session数据作为测试集;2)利用巴特沃斯带通滤波器提取目标信号;3)使用CSP(共同空间模式)提取特征;4)结合分布自适应、类内距和类间距做特征迁移;5)使用集成学习方法进行分类。本发明将分布自适应、类内距和类间距结合起来做特征迁移,并使用集成学习的方法进行分类,有效地解决了由于运动想象数据稀缺而导致的分类准确度不高的问题。
- 单位