摘要
[目的]随着海上风电机组装机容量的飞速发展,业主对海上风电机组的安全运行越来越重视,对风机设备可靠性的要求越来越高。传统的设备故障事后处理模式不仅不能保证发电设备运行的可靠性,而且海上风电运行维护的可达性差,被动的故障后维修无形中增加了巨大的电量损失,已完全不能满足海上风电的要求。设备故障早期智能预警系统可以提前预知设备存在的问题,把设备隐患消除在萌芽状态之内,真正做到"防患于未然"。[方法]通过对海上风电机组关键部件的数据采集,结合历史数据提取故障特征,利用神经网络等大数据算法,实现发电机温度异常、发电机轴承异常、齿轮箱散热异常、齿形带断裂警告等设备故障的提前预判。[结果]根据对设备早期故障的提前预判,可以综合考虑海上风电的气象、台风、海况、海事等维护特点,有计划地执行积极的预防性维护策略,能够有效地避免大部件故障的发生或风机整机失效情况的发生。[结论]研究成果可提高海上风电机组的可靠性和风电场整体发电效益。
- 单位