摘要
准确预测NOx排放量有利于降低选择性催化还原(SCR)烟气脱硝成本,优化锅炉燃烧过程。本文利用偏最小二乘法(PLS)对燃煤锅炉实际数据进行变量重要性投影分析,得到变量重要性投影指标Vip,以Vip为依据对原始变量进行排序,将20项最优变量子集作为深度置信神经网络(DBN)的输入,得到NOx排放预测的PLS-DBN模型,并将PLS-DBN模型与最小二乘支持向量机(LSSVM)、DBN、误差反向传播神经网络(BPNN)模型用于某660 MW机组锅炉的3 000组训练集及500组预测集进行测试对比。结果表明:PLS-DBN模型训练集和测试集的预测误差均较小,且在训练集和测试集上均方根误差不大于2%的预测准确率分别为0.940和0.714,预测准确率最高;表明PLS-DBN模型比其他3种NOx预测模型具有更高的预测精度和模型泛化能力。
- 单位