摘要
为了提高林业害虫检测的准确性,提出一种基于YOLOv4的改进算法。首先,基于智能害虫捕捉装置拍摄的图像,制作害虫数据集,采用K-means算法对样本数据集的目标框进行聚类分析,基于DIoU-NMS算法实现对害虫的计数功能;然后,在模型的路径聚合网络(PANet)结构上增加特征融合和104×104层级特征检测图,以提升对小个体害虫的识别率;最后,根据模型检测效率和复杂度,调整模型中的尺度特征图组合,在保证检测准确度的基础上,提升检测效率,并精简模型。试验结果表明,改进的YOLOv4模型的平均识别精度比传统YOLOv4模型提高了1.6百分点,且对于小个体害虫的识别效果更好,模型复杂度和模型参数量分别减少了11.9%、33.2%,检测速度提升了11.1%,更适于应用部署。
-
单位浙江农林大学暨阳学院; 浙江农林大学