摘要

针对天然地震与人工爆破波形特征相似、难以区分的情况,结合灰狼优化算法和支持向量机,提出一种地震事件性质辨识新方法。通过梅尔频率倒谱系数法对2013年四川芦山地震地震事件信号和人工爆破信号进行分析,进过预加重、FFT、梅尔滤波及离散余弦变换等步骤,提取静态系数样本熵、一阶差分系数样本熵和二阶差分系数样本熵等作为样本特征集。使用灰狼算法优化支持向量机径向基核函数RBF中的惩罚系数和核函数半径形成新的GWO-SVM分类器,然后对事件进行辨识。结果表明:GWO-SVM分类器辨识效果明显优于SVM、RobustBoost集成学习、LDA、PLDA等分类器,其在1 000次循环识别实验下的准确率均值相对SVM提高了9.2个百分点,标准差降低了3.2以上;t检验证明MFCC样本熵各特征具有可靠的地震事件分类效果;GWO-SVM与MFCC样本熵可作为天然地震事件与人工爆破事件的辨识方法与分类判据。

  • 单位
    湖北省地震局; 中国地震局地震研究所

全文