针对目前常用的基于像素的深度神经网络极化SAR分类方法产生的椒盐现象,文中提出了一种联合自适应阈值多尺度分割方法和径向基神经网络的极化SAR地物分类方法。实验证明,该方法能够有效地保留SAR图像的结构特征并有效消除分类过程中产生的椒盐现象和破碎斑块,具有较高的分类精度。