摘要

针对现有图像语义分割中存在小目标对象分割精度不高等问题,提出一种结合上下文注意力的卷积自校正图像语义分割模型。使用上下文注意力机制挖掘局部区域内细粒度特征,结合上下文循环神经网络和残差学习充分挖掘图像的深层隐含语义特征;构建辅助分割模型,在给定图像和边界框注释的情况下生成每像素的标签分布,提出卷积自校正模型,实现分割模型的动态调整。基于3种数据集对所提模型的分割精度进行实验论证,实验结果表明,所提模型的分割精度与分割效果均明显高于其它模型,具有良好的泛化能力。

全文