基于生成对抗网络的图像识别方法拥有很高的识别率,但训练时需要大量有标签样本,在有标签样本较少的情况时识别效果不佳。针对这个问题,结合深度卷积生成对抗网络和半监督生成对抗网络的特点建立半监督深度生成对抗网络。根据有标签样本和无标签样本分布,模型生成拟合真实分布的样本输入并训练分类器,增加了训练样本数从而提升识别率。将模型优化调整并进行图像识别实验,结果表明,该方法仅用少量有标签样本即可实现准确的图像识别。