为进一步提高文本情感倾向性分类效果,提出基于文本特征和语言知识融合的卷积神经网络模型MI-CNN。使用Word2Vec表示词语信息,将词性和情感词语等语言知识嵌入词向量中,将文本特征和语言知识融合到情感倾向性分类模型,经过参数优化提升文本情感倾向性分类模型的准确率。在数据集上进行实验,结果表明所提出的模型准确率达到93.0%,比文献中的基准模型取得了更好的分类效果。