摘要
布谷鸟搜索算法是一种新兴的仿生智能算法,存在着求解精度低、易陷入局部最优及收敛速度慢等缺陷,提出了动态调整概率的双重布谷鸟搜索算法(DECS)。首先,在自适应发现概率P中引入了种群分布熵,通过算法的所处迭代阶数和种群分布情况,动态改变发现概率P的大小,有利于平衡布谷鸟算法局部寻优和全局寻优的能力,加快收敛速度;其次,在布谷鸟寻窝的路径位置更新公式中,采用了一种新型步长因子更新寻优方式,形成Levy飞行双重搜索模式,充分搜索空间;最后,在随机偏好游走的更新公式引入非线性对数递减的惯性权重策略,使得算法有效克服易陷入局部最优的缺陷,提高寻优搜索能力。与4种算法相比和19个测试函数的仿真结果表明:改进布谷鸟算法的寻优性能明显提高,收敛速度更快,求解精度更高,具有更强的全局搜索能力和跳出局部最优能力。
- 单位