摘要
短期负荷数据往往掺杂着不同类型的噪声且波动性大,传统的分解序列方法在提取序列特征时并未考虑到高频噪声的影响。针对上述精准预测问题,介绍了一种分解去噪、重构分解的CVMD-TCN-BiLSTM组合预测方法。采用互补集合经验模态分解(Complementary ensemble empirical mode decomposition,CEEMD)将原始电力负荷数据分解成一组比较稳定的子序列,联合小波阈值法将含有噪声的高频分量去噪,保留含有信号的低频分量进行累加重构。然后利用变分模态分解(Variational mode decomposition,VMD)对去噪后的数据进行二次信号特征提取,得到一组平稳性强且含不同频率的分量。最后,利用时序卷积网络-双向长短时记忆神经网络对各分量进行了预测,并将预测结果进行迭代,获得完整的预测结果。通过对澳大利亚某地的负荷数据作为实例分析,与传统的负荷预测算法相比,验证了所提模型的有效性。
- 单位