摘要

根据高速公路交通数据的特点,采用基于最大偏差相似性准则(MDSC)与KNN填充算法对缺失交通数据进行填充。针对KNN填充算法可能产生伪邻近点问题,提出利用MDSC对不完整的交通数据中缺失的属性样本和完整值数据样本进行聚类,以避免伪邻近点发生;并利用基于骨干粒子群算法对MDSC参数优化。实验结果表明:基于优化MDSC的KNN填充算法的RMSE值更小,效果更优。