摘要
【目的】针对苹果病害中比较常见的症状——花叶病,尤其在昼夜温差大的条件下发病迅速,落叶率提高,造成苹果大面积减产,造成巨大的经济损失。对于花叶病病斑数量太多,尺度不一的影响,从而造成病害识别准确率较低等问题,提出了一种引入迁移学习和胶囊网络的方法,以提高病害识别率。【方法】该方法首先对获得的花叶病数据集进行扩充、数据增强等处理,并利用Labelme工具对图像进行标注,分别标记出病斑区域和叶片区域。其次将训练好的VGG16模型权重通过迁移学习技术移至U-net中编码部分,并引入胶囊网络,使得整个网络具有更强的特征提取能力;然后对VGG16模型、胶囊网络部分进行训练,最后将训练好的网络模型进行语义分割并输出测试的结果。【结果】实验结果表明,原始数据集的准确率为87.51%,引入迁移学习后的准确率提升至91.78%,提升了4.88%;引入胶囊网络的准确率提升至90.04%,提升了2.89%;而引入迁移学习和胶囊网络之后,准确率提升至93.42%,提升了6.75%。并且模型每一轮的训练时间也在引入了迁移学习后提升了2s。【结论】据实验结果可以证明该模型方法引入迁移学习和胶囊网络后,相较于传统模型在识别准确率方面有了一定的提升,其次也减少了每一轮的模型训练时间,总体分割性能较好。
- 单位