摘要

由于三维激光扫描仪获取的点云数据体积大且存在大量冗余,在后期处理时会占用计算机大量的空间和时间成本,因此需要对点云数据进行简化预处理。针对散乱点云数据模型,在保留关键几何特征的前提下,提出了一种层次化的点云简化算法。首先,构造点云模型的长方体包围盒,并将包围盒划分成若干个小立方体栅格,使得每个点都包含在栅格中;然后,计算每一个栅格中各个点的权值,通过对比权值与权阈值来确定该点是否保留,从而删除噪声点,实现点云初始简化;最后,采用基于曲率分级的简化算法实现点云精简化。对公共点云数据模型和文物点云数据模型进行了简化实验,实验结果表明,与随机采样法、均匀网格法及法矢夹角法等算法相比,所提算法具备较好的几何特征保持性能,可以达到较好的点云简化效果,是一种有效的点云简化算法。