摘要

短文本特征稀疏、上下文依赖性强的特点,导致传统长文本分类技术不能有效地被直接应用。为了解决短文本特征稀疏的问题,提出基于Sentence-LDA主题模型进行特征扩展的短文本分类方法。该主题模型是隐含狄利克雷分布模型(Latent Dirichlet Allocation, LDA)的扩展,假设一个句子只产生一个主题分布。利用训练好的Sentence-LDA主题模型预测原始短文本的主题分布,从而将得到的主题词扩展到原始短文本特征中,完成短文本特征扩展。对扩展后的短文本使用支持向量机(Support Vector Machine, SVM)进行最后的分类。实验显示,与传统的基于向量空间模型(Vector Space Model,VSM)直接表示短文本的方法比较,本文提出的方法可以有效地提高短文本分类的准确率。

  • 单位
    武汉邮电科学研究院