摘要

在数据聚类的过程中,由于样本数据空间分布的复杂性,相似度度量过程中的重复性以及算法的自适应性等问题,聚类算法往往无法得到正确的聚类结果.为了解决样本数据空间分布复杂的问题,提出叠加信息熵数据游走聚类算法.该算法通过在数值空间构建样本叠加信息熵场,并通过数据游走进行数据分割实现聚类.实验结果表明,该算法不仅可以获得较好的聚类效果,同时具有较高的数据自适应性.