人工植物算法是最近几年提出来的一种新颖的智能优化算法,把一个植物的生长过程映射为一个智能优化问题。它为那些高维多模问题提出了一种新的解决方法,但是,当把人工植物算法应用到现实问题中时,有时会遇到适应值很耗时的计算,如优化目标和随机问题中存在随机因素的不确定规划问题,或适应值需要通过很多复杂计算才能近似计算等问题。所以,在人工植物算法中需要采取一些预测适应值的策略,采取了基于代进化控制的结合神经网络预测模型的策略(GAPOA)。