摘要
目的 近年来,深度网络成功应用于高光谱图像分类。然而,难以获取充足的标记数据大大限制了深度网络的充分训练,进而导致网络对高光谱图像的分类能力下降。为解决以上困难,提出一种关联子域对齐网络的高光谱图像迁移分类方法。方法 基于深度迁移学习方法,通过对两域分布进行多角度、全面领域适应的同时将两域分类器进行差异适配。一方面,利用关联对齐从整体上对齐了两域的二阶统计量信息,适配了两域的全局分布;另一方面,利用局部最大均值差异对齐了相关子域的一阶统计量信息,适配了两域的局部分布。另外,构造一种分类器适配模块并将其加入所提网络中,通过对两域分类器差异进行适配,进一步增强网络的领域适应效果。结果从4组真实高光谱数据集上的实验结果可看出:在分别采集于不同区域的高光谱图像数据对上,所提方法的精度比排名第2的分类方法高出1.01%、0.42%、0.73%和0.64%。本文方法的Kappa系数也取得最优结果。结论 与现有主流算法相比较,所提网络能够在整体和局部、一阶和二阶统计量上分别对两域进行有效对齐,进而充分利用在源域上训练好的分类器完成对目标域高光谱数据的跨域分类。
- 单位