摘要
协同进化框架是解决大规模全局优化问题的有效方法,设计合理的决策变量分组方法是提高协同进化算法的关键,而利用精英决策变量动态构建精英子组件可以有效提高进化效率,针对大规模优化时,其可能将无关系的变量分配到同一子组件,造成无法充分利用分组提高进化协同进化效率的问题,提出一种精英贡献两阶段动态分组算法(Elite Contribution Two-stage Dynamic Grouping,EC-TSDG):首先,分组前阶段对变量进行随机分组,然后评估变量的贡献程度,从众多变量贡献中寻找精英贡献变量;其次,分组后阶段利用变量的相关关系,寻找与精英决策变量存在相互作用的剩余变量,并将其合并形成精英子组件,使得精英子组件内部的变量两两相关,以此提高变量分组的准确性以及算法的收敛速度,避免子组件之间的相关干扰。最后采用具有外部存档的自适应差分进化算法作为优化器进化各个子组件。在CEC2013测试函数集上与其它先进算法进行比较,提出的算法收敛速度快于对比算法,Friedman检验的平均排序为1.43,高于对比算法36.78%。
- 单位