摘要
在城市道路交通中,信号交叉口区域内车辆频繁停车启动的现象,加剧了整体交通流的能源消耗、污染排放与车辆延误。为了减少信号交叉口启停波现象对整体交通流产生的负面影响,本文面向未来人工驾驶车辆(HDV)/智能网联驾驶车辆(CAV)混合构成的新型混合交通环境,提出一种基于出发时刻预测的生态驾驶方法,通过优化CAV的驾驶轨迹,减少交叉口区域的车辆延误和能源消耗。首先,对混合交通流的基本图模型进行分析,根据启停波影响范围,划分CAV通过交叉口的驾驶场景;然后,建立子区渗透率对饱和车头时距的影响关系,预测CAV以当前饱和车头时距通过交叉口的时间;最后,结合车辆与交叉口的距离,利用分段三角函数模型,生成其通过交叉口的速度限制曲线,并将优化速度嵌入到智能车辆的跟驰模型中作为限制速度。从而,使CAV在无法通过当前绿灯窗口的条件下,实现提前减速,在通过交叉口区域后解除速度限制,切换回自身的跟驰模型。此外,还提出了平均综合效能这一指标来综合评价驾驶策略在效率和能耗两个方面的性能。本文将提出的基于出发时刻预测的生态驾驶方法与传统网联车辆控制方法、经典交叉口节能控制方法进行了对比。研究结果表明:提出的出发时刻预测方法可以精确预测CAV在交叉口的出发时刻,有效减少车辆的能源消耗与污染排放,同时提高信号交叉口的通行效率。在渗透率大于60%情况下,该方法对系统效能的提高达到12%左右,在10%渗透率条件下也可以达到6%的效能增益;在交通饱和流率在0.5~0.9的范围内时,系统的效能增益较明显。
-
单位北京交通大学; 电子信息工程学院; 轨道交通控制与安全国家重点实验室