摘要

随着分布式资源的大规模接入,直流配电网能量损耗小、控制灵活的优点凸显。针对直流配电网传统物理优化模型效率低的问题,提出了一种基于深度学习的直流配电网分布鲁棒优化(DRO)调度方法,其采用深度学习方法替代了基于场景的DRO模型的迭代求解过程,通过直接预测典型场景的最恶劣概率分布来提高模型求解效率。构建直流配电网基于场景的DRO物理模型,采用列与约束生成算法迭代求解生成深度学习的训练数据;以光伏出力、负荷、范数置信度为输入,以最恶劣概率分布为输出,构建深度神经网络模型;基于训练好的神经网络预测实时输入的光伏出力、负荷、范数置信度的最恶劣概率分布,构建最恶劣概率分布下的单层随机规划模型,获取等效的基于场景的DRO调度策略;采用33节点直流配电网系统为算例,验证所提方法在求解效率和计算精度方面的有效性。

全文