摘要
微博作为最受欢迎的社交网络平台之一,是人们表达观点和情感的重要途径。性格影响人的情感表达方式。针对现有微博情感分析很少考虑性格因素这一问题,文章提出一种基于BiLSTM+Self-Attention并结合性格因素的微博情感分类模型(P-BiLSTM-SA)。该模型首先根据"大五"人格理论,基于用户性格将微博文本进行性格分组,然后结合BiLSTM模型和自注意力机制训练出各性格分组的基本分类器,最后采用集成学习方法融合基本分类器预测结果,输出最终的情感标签。为了验证自注意力和性格对情感分类的有效性,文章进行了2组对比实验。第1组实验结果表明,在准确率、精确率、召回率和F1这4个评价指标的综合平均表现上,P-BiLSTM-SA与P-LSTM、P-BiLSTM以及BiLSTM-SA相比,分别提高了0.036、0.017、0.025,说明自注意力机制能有效学习到文本关键信息;第2组实验结果表明,在准确率、精确率、召回率和F1这4个评价指标的综合平均表现上,P-BiLSTM-SA与未结合性格因素的BiLSTM-SA相比,提高了0.012,说明性格因素对情感分类具有一定的帮助。