针对地铁车辆客室电动塞拉门传动装置润滑不良的问题,提出了基于自组织映射(SOM)神经网络、隐马尔可夫链(HMC)模型和蒙特卡罗(MC)仿真的剩余使用寿命预测方法。该方法首先对采集到的电机电流信号进行特征提取;然后利用SOM对提取出的多维特征数据进行融合与编码,将所得结果作为HMC的输入向量,训练得到全部寿命下劣化状态转移矩阵;最后利用MC方法实现对其劣化过程的剩余使用寿命预测。故障模拟实验结果表明,该方法可以在考虑润滑不良故障模式下,有效预测得到电动塞拉门丝杆的剩余使用寿命。