股票价格预测一直受到人们的广泛关注。本文基于长短期记忆网络(LSTM)和马尔科夫链(马氏链)构建了一个新的股价预测模型。以2019年1月2日到2020年10月30日大湾区指数成分股华侨城A(000069)的日收盘价为实证分析对象,先利用LSTM神经网络进行预测,然后运用马氏链模型对其残差进行校正。经测试发现,LSTM神经网络-马氏链模型预测比单一的LSTM神经网络更接近实际。最后,对股价的涨跌趋势及运动周期进行了长期预测。