摘要

时域有限差分(FDTD)方法使用Yee网格剖分电磁场的空间采样,通过时间步迭代实现电磁场数值模拟,具有内存消耗低、计算简单等特点,常用于瞬变电磁三维正演.然而,常规FDTD方法的时间迭代步长Δt受Courant-Friedrich-Lewy(CFL)条件严格限制,过多的迭代次数以及过密的采样往往导致计算速度慢、累积误差不断增大.本文提出一种不受CFL条件约束的无条件稳定隐式差分算法Crank-Nicolson FDTD(CN-FDTD)用于瞬变电磁三维正演.基于Crank-Nicolson差分方法对Maxwell方程组重新离散,空间网格仍然采用Yee元胞,时间步进采用在整时间步电场、磁场同时采样的策略,建立无条件稳定FDTD格式,突破CFL条件限制.与常规FDTD交替采样相比,CN-FDTD电场、磁场同时采样的策略构成的隐式差分格式,需要求解大型稀疏矩阵方程组.通常,瞬变电磁三维正演模型中产生的矩阵阶数往往较大,需要占用大量内存和求解时间.为解决上述问题,采用Crank-Nicolson-cycle-sweep-uniform(CNCSU-FDTD)方法近似求解CN-FDTD方程,在保证求解精度的同时,计算效率大幅提高.在边界条件处理上,采用双线性变换推导了复频率参数完全匹配层(CFS-PML)吸收边界.采用均匀半空间模型、四类三层模型进行精度验证,发现CN-FDTD三维正演结果与解析解、线性数字滤波解吻合较好.之后,与接触带上的低阻复杂模型进行对比,结果显示CN-FDTD正演结果与矢量有限元、有限体积法以及FDTD计算结果吻合较好.在此基础上,研究了时间步放大对CN-FDTD计算精度的影响,发现最大时间步放大到常规FDTD的3200倍时才会在晚期出现较明显的误差.在一台CPU为Intel Core i5-7300HQ的笔记本电脑单线程计算条件下,模拟到关断后30 ms仅需要50 min.在进行并行化后,将有望实现复杂模型分钟级的三维正演,从而为三维反演提供可靠、快速的正演方法.