摘要

传统的恐怖行为预测算法没有考虑到组织会改变其行为策略,而CAPE算法根据组织背景的改变预测行为变化,但其只能根据变化表中存在的背景变化预测行为。为了能根据任意背景变化预测恐怖行为,针对恐怖数据高维小样本的特点,提出了一种利用贝叶斯方法在改进的变化表上预测组织行为的算法。利用贝叶斯方法可快速有效地解决高维小样本分类问题的特性,在改进的变化表上实现对组织行为的预测,从而提高了预测精度和计算效率。此外,考虑到背景的变化会在时间序列上对组织行为产生持续的影响,因此在不同时间滞差下,利用加权的贝叶斯方法预测组织行为。MAROB数据集上多个组织数据的实验结果也表明,所提算法在准确率及时间复杂度上优于CAPE算法。