分析量子进化算法和免疫算子的特点,提出一种分级变异的量子进化算法,用于求解多目标优化问题,算法主要基于两个策略:首先,利用快速非受控排序和密度距离计算种群抗原-抗体的亲和度;然后,基于亲和度排序将个体进行分级,最优分级中的个体作为算法中的最优个体,大部分实施量子旋转更新和免疫操作,而剩余分级中的个体实施免疫交叉操作以获得新的个体补充种群,求解多目标0/1背包问题的实验结果表明了该算法的有效性.