摘要
随着“双碳”目标的提出,高比例可再生能源和高比例电力电子设备正成为电力系统发展的重要趋势和关键特征,其间歇性、不确定性使电力系统实时运行状态辨识面临严峻挑战。为此,本文提出一种基于粒子群优化和卷积神经网络(Particle Swarm Optimization and Convolutional Neural Network,PSO-CNN)的高精度电力系统实时运行状态辨识方法。首先,该方法同时考虑电力系统安全域与稳定域下的暂态问题,适用于暂态稳定故障前、故障中及故障后多场景的电力系统运行状态辨识。其次,为确保样本数据中新能源机组出力方式的全面性,采用拉丁超立方抽样方法对精细化仿真数据采样,考虑到实际电力系统中存在状态类别极端不平衡问题,引入PSO算法调节模型不同类别损失函数权重以提高模型对极端不均衡样本的辨识效果。最后,分别在IEEE39节点系统及某省级电网系统中对所提方法进行评估,实验结果证明了所提状态辨识方法的有效性及鲁棒性。
-
单位中国电力科学研究院有限公司; 太原理工大学