摘要
基于模仿学习以及人机交互技术,借助Kinect深度相机传感器对类人机器人上半身动作模仿问题进行了研究。首先,将改进的D-H模型应用于NAO机器人的手臂完成了手臂运动学模型的精确建立及求解,解决了传统建模方法两相邻关节平行时出现的奇异性问题。其次,提出了一种改进的基于深度图像的手势识别算法,完成了对于示教者手势的判定及模仿,与传统基于彩色图像的手势识别相比,不受光照影响的同时提升了识别准确率,改进算法的平均识别准确率达到96.2%。最后将NAO机器人作为试验平台的实验表明:NAO机器人对于示教者上半身动作的实时在线模仿运动轨迹平滑且稳定,并且在抓取实验中也显现出了较好的准确性。
- 单位