为解决因风电随机性带来的“弃风”问题,实现宽功率波动下的高效制氢,提出基于最小二乘支持向量机(LSSVM)的超短期组合预测模型,提高风电功率预测鲁棒性。通过变分模态分解(VMD)预处理将风电功率分解为不同带宽的子模态,以降低随机噪声及模态混叠的影响;引入蜻蜓算法(DA)优化LSSVM,建立超短期组合预测模型,以满足电解槽控制的时间分辨率及精度要求。以河北省某风电制氢示范项目为例,验证该算法对于高波动性数据具备更高的预测精度,为风电制氢系统的优化控制提供依据。