摘要

基于深度学习技术的缺陷检测算法往往因为网络参数较多而需要大量的图像样本去训练模型,但是在工业生产过程中缺陷产品数量极少,采集大量缺陷数据图像费时又费力。针对这一难题,本文提出了一种基于多模型级联的轻量级缺陷检测算法,采用监督学习的训练方式,通过少量缺陷样本就可以获得较好的检测效果。首先,使用CBAM注意力残差模块代替常规卷积层进行特征提取,以聚焦缺陷特征,强化网络对缺陷的表征能力;其次,设计了SE-FPN模块,促进各级特征之间有效融合,提高网络对缺陷的分割效果,尤其是对小缺陷的分割效果;最后,在训练阶段,采用监督学习方式对本文所提的多模型算法网络进行训练。实验结果表明,本文所提算法在KolektorSDD数据集上的检测准确率高达99.28%,每张图像的平均检测时间仅需10.5 ms,不但充分满足了工业检测行业高精度、实时性的要求,同时,还能实现对缺陷区域精准定位。因此,本文的研究内容非常适合应用在工业产品表面质量在线检测领域。

全文