摘要

为增强遮挡场景下所提取行人特征的判别力,有效挖掘样本类别信息,提出了一种基于特征关联和多损失融合的行人再识别方法。首先利用姿态估计器生成的人体关键点作为辅助信息,引导模型关注行人图像未被遮挡区域,提取姿态引导的全局特征;其次引入全局对比池化模块,将平均池化和最大池化的特性进行融合,提取对背景噪声和遮挡抗干扰性更强的全局特征;然后引入One-vs-rest关系模块,挖掘局部分块特征的内在关系,提取能够反映图像整体信息的局部特征;最后将交叉熵损失、难样本采样三元组损失和中心损失这3种损失函数进行加权融合,监督模型学习类间距离大、类内距离小的行人特征。在Occluded-DukeMTMC数据集进行的评估结果表明,所提算法Rank-1和mAP分别达到54.9%和41.5%,充分体现了改进后方法在处理行人再识别遮挡问题时的有效性和先进性。