摘要
东营凹陷沙三、沙四沉积时期,发育了大量不同时期的砂砾岩体,它们是非常规油气勘探中重要的储层类型。由于砂砾岩体具有纵向厚度变化大、横向展布不均匀、岩相变化快等特点,在地震属性分析与厚度预测时,用单一属性对储层厚度描述具有很大的不确定性。为此,提取了多种地震属性,采用主成分分析法(PCA)进行优化、去除冗余信息。考虑到随机森林(RF)具有预测精度高、对异常值容忍性强、训练速度快且不易过拟合等特点,引入该方法对砂砾岩储层厚度进行预测。针对属性自相似问题,PCA采用了两种方法:①直接对全部属性做降维处理,提取主成分进行预测(PCA-RF1);②先对相似属性做降维处理,再组合其他属性进行预测(PCA-RF2)。原始RF、PCA-RF1、PCA-RF2方法还与人工神经网络方法(ANN)进行了效果对比,结果表明,基于相似属性降维处理的PCA-RF2方法,具有最佳应用效果。
- 单位