针对牛顿法在求解一般非凸函数极小值过程中,迭代点处Hessian矩阵不一定正定的情况,提出了一种精细修正的牛顿法.该方法充分利用迭代点处目标函数的一阶、二阶信息,合适选取搜索方向,是最速下降法、牛顿法和已有修正牛顿法相混合的一种方法.在较弱的条件下建立了算法的全局收敛性.进一步的数值实验验证了提出的算法比以往同类算法计算效率更高.