摘要

目的为消除视盘在硬渗出物(EX)分割过程中带来的影响提出了基于区域分类引导的小波Y-Net网络的EX分割算法。方法该网络为端到端的眼底图像EX分割网络,通过区域分类引导EX分割联合实现了视盘区域检测和EX分割,有效地降低了视盘对EX分割的干扰。为了避免因下采样操作产生信息损失而导致微小EX区域分割失效的问题,该网络进一步引入了离散小波变换(DWT)和离散小波逆变换(IDWT)取代传统的池化下采样和上采样操作。同时,采用了基于残差连接的Inception模块获取多尺度特征。所提出的算法在IDRiD、e-ophtha EX数据库上进行训练和测试,并进行像素级评估。结果区域分类引导的小波Y-Net网络在IDRiD、e-ophtha EX数据库上分别获得0.9858、0.9938的准确率以及0.9880、0.9986的受试者工作特征曲线下面积(AUC)。结论本文提出的方法能够有效地规避视盘的影响,保留图像细节信息,提升EX的分割效果。