摘要
为解决内河航道中具有不同运动模式的船舶轨迹识别问题,提出一种基于宽度学习系统(broad learning system, BLS)的船舶轨迹分类算法。对通航区域进行划分并制定轨迹筛选规则以构建标签矩阵。利用分段三次Hermite插值法分别从轨迹点记录时间上等时距和轨迹点空间分布上等间距两个角度,从原轨迹数据中进行特征点坐标的提取以构建轨迹特征矩阵。将标签矩阵和轨迹特征矩阵代入BLS以实现分类算法的训练与测试。以京杭运河淮安段交叉航道AIS数据为实例,进行轨迹分类实验。结果表明,基于BLS的船舶轨迹分类算法在分类精度和训练耗时上均优于基于反向传播神经网络和支持向量机的轨迹分类算法。
- 单位