摘要
针对输电线路实时巡检中无人机嵌入式移动端的存储和计算受限问题,在Faster R-CNN目标检测框架及VGG特征提取网络基础上,融合深度可分离卷积及SVD分解,构建了一种轻量级的输电线路缺陷检测方法。在公共的PASCAL VOC 2007与COCO数据集上的实验结果验证了所提方法的优越性。在输电线路缺陷数据集上实验,在保证检测精度不下降的同时降低了模型存储空间,提升了模型的检测速度,实现了检测的实时性。
- 单位
针对输电线路实时巡检中无人机嵌入式移动端的存储和计算受限问题,在Faster R-CNN目标检测框架及VGG特征提取网络基础上,融合深度可分离卷积及SVD分解,构建了一种轻量级的输电线路缺陷检测方法。在公共的PASCAL VOC 2007与COCO数据集上的实验结果验证了所提方法的优越性。在输电线路缺陷数据集上实验,在保证检测精度不下降的同时降低了模型存储空间,提升了模型的检测速度,实现了检测的实时性。